Structure Reports

Online
ISSN 1600-5368

Bo Liu,* Chuan-Bi Li, Zhou Shi and Yan-Wei Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: jkliu1999@yahoo.com

Key indicators

Single-crystal X-ray study
$T=186 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.035$
$w R$ factor $=0.097$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[bis(triethylammonium) tetraethylammonium hexacosaoxopotassiooctamolybdate]

The title compound, $\left\{\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{KMo}_{8} \mathrm{O}_{26}\right]\right\}_{n}$, contains polyanionic zigzag chains comprising centrosymmetric $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ units linked by K^{+}cations which also lie on centres of inversion.

Comment

Polyoxometalates (POMs) have attracted interest for some time, stimulated by their wide range of topologies and driven by potential applications in catalysis, magnetism, medicinal chemistry and materials science (Hill, 1998; Coronado \& Gomez-Garcia, 1998; Yamase, 1998). Introduction of organic ligands into POMs can lead to new types of frameworks and can improve their physicochemical properties.

Received 13 September 2006 Accepted 25 September 2006

Figure 1
The contents of the asymmetric unit, together with symmetry-generated atoms to complete each structural component, showing displacement ellipsoids at the 50% probability level. H atoms haev been omitted. Unlabelled C atoms of the tetraethylammonium cation are generated by $\left(-x, y, \frac{1}{2}-z\right)$ and unlabelled atoms of the polyoxoanion are generated by $(-x, 1-y,-z)$.

Figure 2
A view of the one-dimensional zigzag chain structure in (I).
between the polyanion chains (Fig. 3), forming $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 1).

Experimental

All reagents and solvents were purchased from Siping Chemical Reagent Company and used without further purification. $\mathrm{H}_{2} \mathrm{MoO}_{4}$ $(0.8 \mathrm{~g})$ was dissolved in a $0.2 \mathrm{M} \mathrm{KOH}(25 \mathrm{ml})$ solution with stirring. Tetraethylammonium chloride (0.08 g) was added slowly and the pH was adjusted to $4.2-4.3$ by addition of 6 MCl (aq). The resulting slurry was refluxed at 363 K for about 1.5 h and then cooled to room temperature. The filtrate was transferred into a 50 ml beaker, and slow evaporation of the solvent at room temperature yielded crystals of (I) after one week.

Figure 3
Projection of (I) along the b axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are displayed as dashed lines. H atoms have been omitted.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{KMo}_{8} \mathrm{O}_{26}\right]$

$$
Z=4
$$

$M_{r}=1557.27$
Monoclinic, $C 2 / c$
$a=25.2665$ (13) A
$b=10.9129$ (6) \AA
$c=18.7274$ (10) \AA
$\beta=121.666(1)^{\circ}{ }^{\circ}$
$V=4395.0(4) \AA^{3}$

Data collection

Bruker SMART APEXII CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.633, T_{\text {max }}=0.775$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.097$
$S=1.03$
4364 reflections
247 parameters
H -atom parameters constrained
$D_{x}=2.353 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.39 \mathrm{~mm}^{-1}$
$T=186$ (2) K
Prism, colourless
$0.41 \times 0.17 \times 0.10 \mathrm{~mm}$

11643 measured reflections
4364 independent reflections
3494 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.1^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0459 P)^{2}\right.} \\
&+30.4579 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.73 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected bond lengths $(\AA$).

$\mathrm{Mo} 1-\mathrm{O} 2$	1.945 (4)	Mo3-O6 ${ }^{\text {i }}$	2.322 (4)
Mo1-O4	2.155 (4)	Mo3-O8	1.701 (4)
$\mathrm{Mo} 1-\mathrm{O} 4^{\text {i }}$	2.331 (4)	Mo3-O10	1.895 (4)
Mo1-O5	1.747 (4)	Mo3-O12	1.688 (4)
Mo1-O6	1.953 (4)	$\mathrm{Mo4-O4}{ }^{\text {i }}$	2.440 (4)
Mo1-O9	1.692 (4)	Mo4-O5	2.288 (4)
Mo2-O1	1.691 (4)	Mo4-O7	1.918 (4)
$\mathrm{Mo} 2-\mathrm{O} 2$	2.317 (4)	Mo4-O10 ${ }^{\text {i }}$	1.921 (4)
Mo2-O3	1.706 (4)	Mo4-O11	1.703 (4)
$\mathrm{Mo} 2-\mathrm{O} 4^{\text {i }}$	2.334 (4)	Mo4-O13	1.708 (4)
$\mathrm{Mo} 2-\mathrm{O}^{\text {i }}$	2.000 (4)	$\mathrm{K}-\mathrm{OB}^{\text {i }}$	2.797 (4)
Mo2-O7	1.898 (4)	$\mathrm{K}-\mathrm{O} 8$	2.806 (5)
Mo3-O2	2.003 (4)	K-O9	2.795 (4)
Mo3-O4	2.343 (4)	$\mathrm{K}-\mathrm{O} 11^{\text {i }}$	2.844 (5)

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $x,-y+1, z+\frac{1}{2}$; (iii) $-x, y,-z+\frac{1}{2}$.

metal-organic papers

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O13	0.91	1.89	$2.786(8)$	169
C2-H2A \cdots O3 $^{\text {iv }}$	0.97	2.77	$3.221(9)$	109
C9-H9A \cdots O7 v	0.96	2.59	$3.192(14)$	121
C9-H9B \cdots O5	0.96	2.55	$3.263(12)$	131
C9-H9C \cdots O7	0.96	2.76	$3.374(12)$	123
Symmetry codes: (iv) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;(\mathrm{v})-x,-y,-z$				

Methyl and methylene H atoms were placed in calculated positions and were allowed to ride during subsequent refinement with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{C}-\mathrm{H}=0.97 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, respectively. The N -bound H atom of the triethylammonium cation was visible in a difference Fourier map, but was placed in a calculated position with $\mathrm{N}-\mathrm{H}=0.91 \AA$ and allowed to ride during subsequent refinement, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve
structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by Jilin Normal University Innovative Foundation (research grant No. 20050051006).

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SMART (Version 5.611), SAINT (Version 6.0) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Coronado, E. \& Gomez-Garcia, C. J. (1998). Chem. Rev. 98, 273-296.
Hill, C. L. (1998). Chem. Rev. 98, 1-2.
Li, M.-X., Ma, P.-T. \& Wang, J.-P. (2006). Acta Cryst. E62, m2661-m2663.
Liu, B., Li, C.-B., Zhou, S. \& Li, Y.-W. (2006). Acta Cryst. E62, m2656m 2658.
Yamase, T. (1998). Chem. Rev. 98, 307-321.

[^0]: (C) 2006 International Union of Crystallography

